
COL7160 : Quantum Computing
Lecture 7: Oracle Model and Deutsch’s Algorithm

Instructor: Rajendra Kumar Scribe: Mayank Giri

1 Oracle Model andQuantum Parallelism
Let f : {0, 1} → {0, 1} be a Boolean function. In the quantum setting, we do not access f directly; instead, we are
given access to an oracle unitary Uf defined as

Uf : |x, b⟩ 7−→ |x, b⊕ f(x)⟩ ,

where x, b ∈ {0, 1} and ⊕ denotes addition modulo 2.
Remark 1. The oracleUf is reversible even if f itself is not. This reversibility is essential since all quantum operations
must be unitary.

Example 2. Applying Uf twice yields the identity:

U2
f |x, b⟩ = |x, b⊕ f(x)⊕ f(x)⟩ = |x, b⟩ .

Hence, U†
f = Uf and Uf is unitary.

2 Quantum Parallelism
Quantum parallelism refers to the ability of a quantum computer to evaluate a function on a superposition of inputs
in a single query .
Consider the initial two-qubit state |0⟩ |0⟩. Applying a Hadamard gate to the first qubit gives

(H ⊗ I) |0⟩ |0⟩ = |+⟩ |0⟩ = 1√
2
(|0⟩ |0⟩+ |1⟩ |0⟩).

Applying the oracle Uf yields
Uf (|+⟩ |0⟩) = 1√

2

(
|0⟩ |f(0)⟩+ |1⟩ |f(1)⟩

)
.

This state encodes information about both f(0) and f(1) simultaneously.

3 Deutsch’s Problem (Parity Problem)
Let f : {0, 1} → {0, 1}. There are four possible such functions:

f(0) f(1) Type
0 0 Constant
1 1 Constant
0 1 Balanced
1 0 Balanced

Definition 3. The function f is called constant if f(0) = f(1), and balanced if f(0) ̸= f(1).

The goal of Deutsch’s problem is to determine whether f is constant or balanced using as few oracle queries as
possible.
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4 Phase Kickback
Prepare the second qubit in the state

|−⟩ = 1√
2
(|0⟩ − |1⟩).

Applying the oracle gives

Uf |a⟩ |−⟩ = 1√
2
|a⟩ (|0⊕ f(a)⟩ − |1⊕ f(a)⟩) = (−1)f(a) |a⟩ |−⟩ .

Remark 4. The phase (−1)f(a) is a global phase on the second qubit and cannot be directly measured. However,
relative phases between components of a superposition can be detected.

5 Deutsch Algorithm Computation
Start with the state |+⟩ |−⟩. Applying Uf :

Uf |+⟩ |−⟩ = 1√
2

(
(−1)f(0) |0⟩+ (−1)f(1) |1⟩

)
|−⟩ .

Factoring out a global phase (−1)f(0) gives

=
(−1)f(0)√

2

(
|0⟩+ (−1)f(0)⊕f(1) |1⟩

)
|−⟩ .

If f is constant, then f(0)⊕ f(1) = 0, and the first qubit is |+⟩. If f is balanced, then f(0)⊕ f(1) = 1, and the first
qubit is |−⟩.
Measuring the first qubit in the {|+⟩ , |−⟩} basis distinguishes the two cases with certainty using a single oracle
query.

5.1 Circuit Representation of Deutsch’s Algorithm
The Deutsch algorithm can be represented using the following quantum circuit.

|0⟩ H
Uf

H

|0⟩ X H

The second qubit is prepared in the state |−⟩, enabling phase kickback. Only the first qubit is measured.

• If the measurement outcome is |0⟩ (equivalently |+⟩ before the final Hadamard), then f is constant.

• If the measurement outcome is |1⟩ (equivalently |−⟩), then f is balanced.

Thus, Deutsch’s algorithm determines whether f is constant or balanced using a single oracle query.

6 Oracle Model for General Functions
Let f : {0, 1}n → {0, 1}. The oracle is defined as

Uf |x, b⟩ = |x, b⊕ f(x)⟩ ,

where x ∈ {0, 1}n.
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Preparing the state
1√
2n

∑
x∈{0,1}n

|x⟩ |−⟩

and applying Uf yields
1√
2n

∑
x∈{0,1}n

(−1)f(x) |x⟩ |−⟩ .

Thus, the function values f(x) are encoded as relative phases on the computational basis states. This phase infor-
mation can later be extracted using interference.

6.1 Oracle Model: Indexing Interpretation
Let N = 2n and consider a function

f : {0, 1}n → {0, 1}.
Each element of {0, 1}n can be identified with an integer i ∈ {0, 1, . . . , N − 1} via its binary representation.
Under this identification, the function f can be equivalently viewed as a binary string

Y = (y0, y1, . . . , yN−1), where yi := f(i).

In this interpretation, the oracle Uf acts as

Uf |i, b⟩ = |i, b⊕ yi⟩ ,

where |i⟩ is represented using logN = n qubits.
Remark 5. This viewpoint treats the oracle as a black-box database storing the string Y , where a query at index i
returns the bit yi via a reversible transformation.

7 Balanced and Constant Functions (General Case)
Definition 6. A function f : {0, 1}n → {0, 1} is:

• constant if f(x) = f(y) for all x, y,

• balanced if exactly half the inputs map to 0 and half to 1.

If f is constant, the state becomes
1√
2n

∑
x

|x⟩ ,

up to a global phase. We will solve this problem in the next lecture.

8 Hadamard Transform
Proposition 7. For x ∈ {0, 1}n,

H⊗n |x⟩ = 1√
2n

∑
y∈{0,1}n

(−1)x·y |y⟩ ,

where x · y = x1y1 + · · ·+ xnyn (mod 2).

Proof. The result follows from applying the single-qubit identity

H |xi⟩ =
1√
2

(
|0⟩+ (−1)xi |1⟩

)
to each qubit and expanding the tensor product.

Remark 8. Applying H⊗n to the uniform superposition returns |0n⟩, which is crucial for distinguishing constant
functions in Deutsch–Jozsa–type algorithms.
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9 Promise Problems
In many quantum algorithms, the function f is guaranteed (or promised) to belong to a specific class, such as being
either balanced or constant.
Remark 9. Without the promise, it is impossible to classify f with certainty using a single oracle query.
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