COL7160 : Quantum Computing
Lecture 7: Oracle Model and Deutsch’s Algorithm

Instructor: Rajendra Kumar Scribe: Mayank Giri

1 Oracle Model and Quantum Parallelism

Let f : {0,1} — {0, 1} be a Boolean function. In the quantum setting, we do not access f directly; instead, we are
given access to an oracle unitary Uy defined as

Up |, b) — |z, b @ f(2)),

where x,b € {0,1} and @ denotes addition modulo 2.

Remark 1. The oracle Uy is reversible even if f itself is not. This reversibility is essential since all quantum operations
must be unitary.

Example 2. Applying Uy twice yields the identity:

Hence, U} = Uy and Uy is unitary.

2 Quantum Parallelism

Quantum parallelism refers to the ability of a quantum computer to evaluate a function on a superposition of inputs
in a single query .
Consider the initial two-qubit state |0) |0). Applying a Hadamard gate to the first qubit gives

1

(H @ 1)10) |0) = [+) [0) = —=(]0) [0) + [1) [0)).
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2

Applying the oracle Uy yields
1
V2

This state encodes information about both f(0) and f(1) simultaneously.

Up(1+)10) = —=(10) [£(0)) + 1) [£(1)))-

3 Deutsch’s Problem (Parity Problem)

Let f : {0,1} — {0, 1}. There are four possible such functions:

f0) | f(1) | Type
0 0 Constant
1 1 Constant
0 1 Balanced
1 0 Balanced

Definition 3. The function f is called constant if f(0) = f(1), and balanced if f(0) # f(1).

The goal of Deutsch’s problem is to determine whether f is constant or balanced using as few oracle queries as
possible.



4 Phase Kickback

Prepare the second qubit in the state
1
—) =—=(]0) —]1)).
) = 5500 = 1)

Applying the oracle gives
Usla)|=) = % ja) (10 @ f(a)) = L@ f(a))) = (=1)7@ |a) |-).

Remark 4. The phase (—1)/(%) is a global phase on the second qubit and cannot be directly measured. However,
relative phases between components of a superposition can be detected.

5 Deutsch Algorithm Computation

Start with the state |+) |—). Applying U;:

1
U |+) |-) = —= (=)@ 10) + (=)D 1)) |-).
f|>|>\/§(() 10) + (=17 1)) |-)
Factoring out a global phase (—1)/(®) gives
—1)f(0)
= 0 (10 + (2O 1)) -
If f is constant, then f(0) @ f(1) = 0, and the first qubit is |+). If f is balanced, then f(0) @ f(1) = 1, and the first

qubit is |—).
Measuring the first qubit in the {|+),|—)} basis distinguishes the two cases with certainty using a single oracle
query.

5.1 Circuit Representation of Deutsch’s Algorithm

The Deutsch algorithm can be represented using the following quantum circuit.

Ty —
Uy
)

The second qubit is prepared in the state |—), enabling phase kickback. Only the first qubit is measured.

« If the measurement outcome is |0) (equivalently |+) before the final Hadamard), then f is constant.

« If the measurement outcome is |1) (equivalently |—)), then f is balanced.

Thus, Deutsch’s algorithm determines whether f is constant or balanced using a single oracle query.

6 Oracle Model for General Functions
Let f : {0,1}™ — {0, 1}. The oracle is defined as
Uf |fc’b> = |$,b€B f(l» )

where z € {0,1}".



Preparing the state

jﬁ S @)

z€{0,1}m

and applying U yields
\ﬁ Y D)@y,

z€e{0,1}n

Thus, the function values f(x) are encoded as relative phases on the computational basis states. This phase infor-
mation can later be extracted using interference.

6.1 Oracle Model: Indexing Interpretation

Let N = 2™ and consider a function

f:{0,1}" —{0,1}.
Each element of {0, 1}" can be identified with an integer ¢ € {0,1,..., N — 1} via its binary representation.
Under this identification, the function f can be equivalently viewed as a binary string

Y:(y03y17"'7yN—1); Whereyi = f(Z)
In this interpretation, the oracle Uy acts as
Uy li,b) = i, b® i),

where |4) is represented using log N = n qubits.

Remark 5. This viewpoint treats the oracle as a black-box database storing the string Y, where a query at index ¢
returns the bit y; via a reversible transformation.

7 Balanced and Constant Functions (General Case)

Definition 6. A function f : {0,1}"™ — {0, 1} is:
o constant if f(z) = f(y) for all z, y,
« balanced if exactly half the inputs map to 0 and half to 1.

If f is constant, the state becomes

1
@Zm,

up to a global phase. We will solve this problem in the next lecture.

8 Hadamard Transform

Proposition 7. Forz € {0,1}",
1
H®|o)=—= > (~=1)""]y),
2 y€{0,1}"

where x -y = x1y1 + - -+ + Tpyn (mod 2).
Proof. The result follows from applying the single-qubit identity

H |z;) = 10) + (=1)™ [1))

7 (
to each qubit and expanding the tensor product. O

Remark 8. Applying H®" to the uniform superposition returns |0"), which is crucial for distinguishing constant
functions in Deutsch-Jozsa-type algorithms.



9 Promise Problems

In many quantum algorithms, the function f is guaranteed (or promised) to belong to a specific class, such as being
either balanced or constant.

Remark 9. Without the promise, it is impossible to classify f with certainty using a single oracle query.
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